Course Overview:

The Implementing and Operating Cisco Enterprise Network Core Technologies (ENCOR) course gives you the knowledge and skills needed to configure, troubleshoot, and manage enterprise wired and wireless networks. You’ll also learn to implement security principles, implement automation and programmability within an enterprise network, and how to overlay network design by using SD-Access and SD-WAN solutions.

Attendees to N-415: Implementing and Operating Cisco Enterprise Network Core Technologies (ENCOR) will receive TechNow approved course materials, expert instruction, and prepare you to take the 350-401 Implementing Cisco® Enterprise Network Core Technologies (ENCOR) exam.

Document Flow Chart iconsm

Dates/Locations:

No Events

Duration: 5 Days

Course Objectives:

  • Illustrate the hierarchical network design model and architecture using the access, distribution, and core layers
  • Compare and contrast the various hardware and software switching mechanisms and operation, while defining the Ternary Content Addressable Memory (TCAM) and Content Addressable Memory (CAM), along with process switching, fast switching, and Cisco Express Forwarding concepts
  • Troubleshoot Layer 2 connectivity using VLANs and trunking
  • Implementation of redundant switched networks using Spanning Tree Protocol
  • Troubleshooting link aggregation using Etherchannel
  • Describe the features, metrics, and path selection concepts of Enhanced Interior Gateway Routing Protocol (EIGRP)
  • Implementation and optimization of Open Shortest Path First (OSPF)v2 and OSPFv3, including adjacencies, packet types, and areas, summarization, and route filtering for IPv4 and IPv6
  • Implementing External Border Gateway Protocol (EBGP) interdomain routing, path selection, and single and dual-homed networking
  • Implementing network redundancy using protocols including Hot Standby Routing Protocol (HSRP) and Virtual Router Redundancy Protocol (VRRP)
  • Implementing internet connectivity within Enterprise using static and dynamic Network Address Translation (NAT)
  • Describe the virtualization technology of servers, switches, and the various network devices and components
  • Implementing overlay technologies such as Virtual Routing and Forwarding (VRF), Generic Routing Encapsulation (GRE), VPN, and Location Identifier Separation Protocol (LISP)
  • Describe the components and concepts of wireless networking including Radio Frequency (RF) and antenna characteristics, and define the specific wireless standards
  • Describe the various wireless deployment models available, include autonomous Access Point (AP) deployments and cloud-based designs within the centralized Cisco Wireless LAN Controller (WLC) architecture
  • Describe wireless roaming and location services
  • Describe how APs communicate with WLCs to obtain software, configurations, and centralized management
  • Configure and verify Extensible Authentication Protocol (EAP), WebAuth, and Pre-Shared Key (PSK) wireless client authentication on a WLC
  • Troubleshoot wireless client connectivity issues using various available tools
  • Troubleshooting Enterprise networks using services such as Network Time Protocol (NTP), Simple Network Management Protocol (SNMP), Cisco Internetwork Operating System (Cisco IOS®) IP Service Level Agreements (SLAs), NetFlow, and Cisco IOS Embedded Event Manager
  • Explain the use of available network analysis and troubleshooting tools, which include show and debug commands, as well as best practices in troubleshooting
  • Configure secure administrative access for Cisco IOS devices using the Command-Line Interface (CLI) access, Role-Based Access Control (RBAC), Access Control List (ACL), and Secure Shell (SSH), and explore device hardening concepts to secure devices from less secure applications, such as Telnet and HTTP
  • Implement scalable administration using Authentication, Authorization, and Accounting (AAA) and the local database, while exploring the features and benefits
  • Describe the enterprise network security architecture, including the purpose and function of VPNs, content security, logging, endpoint security, personal firewalls, and other security features
  • Explain the purpose, function, features, and workflow of Cisco DNA Center™ Assurance for Intent-Based Networking, for network visibility, proactive monitoring, and application experience
  • Describe the components and features of the Cisco SD-Access solution, including the nodes, fabric control plane, and data plane, while illustrating the purpose and function of the Virtual Extensible LAN (VXLAN) gateways
  • Define the components and features of Cisco SD-WAN solutions, including the orchestration plane, management plane, control plane, and data plane
  • Describe the concepts, purpose, and features of multicast protocols, including Internet Group Management Protocol (IGMP) v2/v3, Protocol-Independent Multicast (PIM) dense mode/sparse mode, and rendezvous points
  • Describe the concepts and features of Quality of Service (QoS), and describe the need within the enterprise network
  • Explain basic Python components and conditionals with script writing and analysis
  • Describe network programmability protocols such as Network Configuration Protocol (NETCONF) and RESTCONF
  • Describe APIs in Cisco DNA Center and vManage

Prerequisites:

  • CCNA certification
  • Implementation of Enterprise LAN networks
  • Basic understanding of Enterprise routing and wireless connectivity
  • Basic understanding of Python scripting

 

Comments

Latest comments from students


User: don.seguin

Instructor comments: Tim was a great.

Facilities comments: The classroom was great.


User: jrtrussell

Instructor comments: Awesome

Facilities comments: Great


Liked the class?  Then let everyone know!

Course Overview:

As VoIP (Voice-over IP) is integrated into the operations of many missions, it is imperative to understand its security ramifications.  In the N-595: VoIP Security Analysis and Design class the objectives are designed for those who are chartered with the responsibility of securing networks and application environments that incorporate VoIP.   Topics include how VoIP works, its interactions with the network, its vulnerabilities and mitigations.  Focus is on leading open source and proprietary technologies utilizing Asterisk and Cisco and the protocols SIP, H.323, RTP, MGCP, and Skinny.  Other protocols such as Nortel's UNIStim will be addressed.  As for Cisco, security pieces in the VoIP CallManager servers, Catalyst switches, IOS-based routers, and ASA firewalls, amounts to several different platforms, each with its own management interface and lockdown procedures.   Various open source tools including those in BackTrack are used for VoIP attacks.  A task list of actions for securing enterprise VoIP is carried out in hands-on labs, performed on Cisco phones, routers, switches, and ASA firewalls.

Attendees to N-595: VoIP Security Analysis and Design will receive TechNow approved course materials and expert instruction.

Dates/Locations:

No Events

Duration: 5 Days

Course Objectives:

  • VoIP Architecture
  • VoIP Signaling and media protocols
  • Common VoIP authentication mechanisms
  • Common VoIP encryption techniques
  • VoIP protocol analysis with Wireshark
  • Maintaining QoS while mitigating DoS
  • VoXML, XML, and application integration security
  • Converged network security design and implementation
  • Impact of NAT and firewalls
  • SIP, H.323, and MGCP vulnerabilities
  • VPN, IPsec and SRTP to secure VoIP services
  • Penetration testing with open source tools
  • Attacks for Eavesdropping, call redirection, and DoS
  • Design of hacked firmware virtualization layer
  • Concise lockdown steps for network hardware and VoIP

Prerequisites:

  • This is an advanced Information Security Course which requires basic Windows & UNIX competency
  • Certification or 2 years of experience in these operating systems is highly recommended
  • As well as an understanding of TCP/IP

Comments

Latest comments from students


Liked the class?  Then let everyone know!

 

Course Overview:

TN-575: Open Source Network Security Monitoring teaches students how to deploy, build, and run an NSM operation using open source software and vendor-neutral tools. No network is bullet proof and when attackers access your network, this course will show you how to build a security net to detect, contain, and control the attacker. Sensitive data can be monitored and deep packet and deep attachment analysis can be achieved. As organizations stand up a Security Operations Center (SOC) the enterprise NSM is the key ingredient to that SOC. This course not only teaches how to implement an NSM technologically, but how to effectively monitor an enterprise operationally. You will learn how to architect an NSM solution: where to deploy your NSM platforms and how to size them, stand-alone or distributed, and integration into packet analysis, interpret evidence, and integrate threat intelligence from external sources to identify sophisticated attackers. A properly implemented NSM is integral to incident response and provides the responders timely information to react to the incident. TN-575: Open Source Network Security Monitoring is a lab intensive environment with a cyber range that gives each student in-depth knowledge and practical experience monitoring live systems to include: Cisco, Windows, Linux, IoT, and Firewalls.

Attendees to TN-575: Open Source Network Security Monitoring class will receive TechNow approved course materials and expert instruction.

This Course is taught utilizing Security Onion or RockNSM as specified by the customer.

Dates/Locations:

No Events

Duration: 5 Days

Course Objective:

The focus of this course is to present a suite of Open Source security products integrated into a highly functional and scalable Network Security Monitoring solution.

Prerequisites:

Students should have a basic understanding of networks, TCP/IP and standard protocols such as DNS, HTTP, etc. Some Linux knowledge/experience is recommended, but not required

Course Outline:

  • Network Security Monitoring (NSM) Methodology
  • High Bandwidth Packet Capture Challenges
  • Installation of Security Onion
    • Use Cases (analysis, lab, stand-alone, distributed)
    • Resource Requirements
  • Configuration
    • Setup Phase I – Network Configuration
    • Setup Phase 2 – Service Configuration
    • Evaluation Mode vs. Configuration Mode
    • Verifying Services
  • Security Onion Architecture
    • Configuration Files and Folders
    • Network Interfaces
    • Docker Environment
    • Security Onion Containers
  • Overview of Security Onion Analyst Tools
    • Kibana
    • CapME
    • CyberChef
    • Squert
    • Sguil
    • NetworkMiner
  • Quick Review of Wireshark and Packet Analysis
    • Display and Capture Filters
    • Analyze and Statistics Menu Options
    • Analysis for Signatures
  • Analyzing Alerts
    • Replaying Traffic
    • 3 Primary Interfaces:
      • Squert
      • Sguil
      • Kibana
    • Pivoting Between Interfaces
    • Pivoting to Full Packet Capture
  • Snort and Surricata
    • Rule Syntax and Construction
    • Implementing Custom Rules
    • Implementing Whitelists and Blacklists
  • Hunting
    • Using Kibana to Slice and Dice Logs
    • Hunting Workflow with Kibana
  • Bro
    • Introduction and Overview
      • Architecture, Commands
    • Understanding and Examining Bro Logs
      • Using AWK, sort, uniq, and bro-cut
    • Working with traces/PCAPs
    • Bro Scripts Overview
      • Loading and Using Scripts
    • Bro Frameworks Overview
      • Bro File Analysis Framework FAF
    • Using Bro scripts to carve out more than files
  • RockNSM ( * If Applicable)
    •  Kafka
      • Installation and Configuration
      • Kafka Messaging
      • Brokers
      • Integration with Bro and FSF
    • File Scanning Framework FSF
      • Custom YARA Signatures
      • JSON Trees
      • Sub-Object Recursion
      • Bro and Suricata Integration
  • Elastic Stack
    • Adding new data sources in Logstash
    • Enriching data with Logstash
    • Automating with Elastalert
    • Building new Kibana dashboards
  • Production Deployment
    • Advanced Setup
    • Master vs Sensor
    • Node Types – Master, Forward, Heavy, Storage
    • Command Line Setup with sosetup.conf
    • Architectural Recommendations
    • Sensor Placement
    • Hardening
    • Administration
    • Maintenance
  • Tuning
    • Using PulledPork to Disable Rules
    • BPF’s to Filter Traffic
    • Spinning up Additional Snort / Suricata / Bro Workers to Handle Higher Traffic Loads

Comments

Latest comments from students


 

Liked the class?  Then let everyone know!

 

Course Overview:

Through an introduction to Docker, Kubernetes, and Red Hat OpenShift Platform, this training course helps you understand one of the key tenets of the DevOps and DevSecOps Platform (DSOP) movement: continuous integration and continuous deployment. The CI/CD pipeline becomes well understood and implemented in an open architecture.  Containers have become a key technology for the configuration and deployment of applications and micro services. Kubernetes is a container orchestration platform that provides foundational services in Red Hat OpenShift Container Platform, which allows enterprises to manage container deployments and scale their applications using Kubernetes.

This training course provides an overview of the DoD Enterprise DevSecOps Platform (DSOP) Reference Design, its current state, and ties to DoD Cloud Platform One (P1). Workflows of the DoD Iron Bank container repository are introduced, along with an overview of the DoD Pipeline as represented in Big Bang.  Continuous authorization cATO via Party Bus within NIST RMF is presented. You will become aware of the Platform One (P1) integrations and relationship to Docker, Kubernetes, Istio (Red Hat OpenShift Service Mesh) and Red Hat OpenShift Platform.

In addition to gaining an understanding of these tools, you will build core administration skills through the installation, configuration, and management of an OpenShift cluster and containerized applications.

Course Objectives:

  • Learn about Containers, Docker, Kubernetes, and OpenShift architecture
  • Overview DoD Enterprise DevSecOps Platform (DSOP) Reference Design and DoD Cloud Platform One (P1)
  • Tie together awareness of various DoD Cloud offerings and their relationships
  • Create containerized services
  • Manage containers and container images
  • Deploy multi-container applications
  • Install an OpenShift cluster
  • Configure and manage masters and nodes
  • Secure OpenShift
  • Control access to resources on OpenShift
  • Monitor and collect metrics on OpenShift
  • Deploy applications on OpenShift using source-to-image (S2I)
  • Manage storage on OpenShift

Course Outline:

  • Getting started with container technology
  • Creating containerized services
  • Managing containers
  • Managing container images
  • Creating custom container images
  • Deploying containerized applications on OpenShift
  • Deploying multi-container applications
  • Troubleshooting containerized applications
  • Comprehensive Review of Introduction to Container, Kubernetes, and RedHat OpenShift
  • Introducing Red Hat OpenShift Container Platform
  • Installing OpenShift Container Platform
  • Describing and exploring OpenShift networking concepts
  • Executing commands
  • Controlling access to OpenShift resources
  • Allocating persistent storage
  • Managing application deployments
  • Installing and configuring the metrics subsystem
  • Managing and monitoring OpenShift Container Platform

Dates/Locations:

No Events

Duration: 5 Days

Prerequisites:

  • Ability to use a Linux® terminal session and issue operating system commands
  • Good foundation in Linux
  • Experience with web application architectures and their corresponding technologies

Target Audience:

  • Developers who wish to containerize software applications
  • Administrators who are new to container technology and container orchestration
  • Architects who are considering using container technologies in software architectures
  • System administrators
  • System architects
  • Architects and developers who want to install and configure OpenShift Container Platform
  • Those working in the field of DevSecOps supporting DoD Platform One (P1) and other implementations

Comments

Latest comments from students


 

Liked the class?  Then let everyone know!

 

Course Overview:

This hands-on course provides an intensive overview of fundamental UNIX commands that are common to all flavors of UNIX, but the focus is on RedHat. At the end of this course students will have a firm grasp of how the UNIX operating system works, how to accomplish powerful functions using multiple commands & most importantly of all, how to think UNIX. With the skills gained in this course, students can move on to RedHat System Administration I or Linux System Admnistration I.

Attendees of TN-125: Introduction to UNIX and Linux will receive course materials and expert Instruction.

Date/Locations:

Date/Time Event
11/03/2025 - 11/07/2025
08:00 -16:00
TN-125: Introduction to UNIX and Linux
TechNow, Inc, San Antonio TX

Duration: 5 days

Course Objectives:

  • Unix Overview
  • Introduction to the UNIX command Line
  • Managing and controlling access to files
  • Batch Scripting and tools
  • Regular Expressions, Pipelines, and IO Redirection
  • Text File Manipulation
  • Basic Network Commands
  • Managing Unix Processes
  • GNOME Graphical Desktop

Prerequisites:

  • Basic Knowledge of Computers

Comments

Latest comments from students



User: trkdashin

Instructor comments: Very knowledgeable

Facilities comments: Nice Hotel


 

Liked the class?  Then let everyone know!